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SUMMARY

A composite finite volume method (FVM) is developed on unstructured triangular meshes and tested for
the two-dimensional free-surface flow equations. The methodology is based on the theory of the
remainder effect of finite difference schemes and the property that the numerical dissipation and
dispersion of the schemes are compensated by each other in a composite scheme. The composite FVM
is formed by global composition of several Lax–Wendroff-type steps followed by a diffusive Lax–
Friedrich-type step, which filters out the oscillations around shocks typical for the Lax–Wendroff
scheme. To test the efficiency and reliability of the present method, five typical problems of discontinuous
solutions of two-dimensional shallow water are solved. The numerical results show that the proposed
method, which needs no use of a limiter function, is easy to implement, is accurate, robust and is highly
stable. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study on the shallow water wave problems by the numerical method is one of the most active
topics in computational mathematics, computational fluid mechanics and computational
hydraulics. Using numerical simulation and numerical analysis, taking the suitable simplified
model, scientists can get a lot of significant information for various complicated shallow water
wave phenomena. In recent years, especially, many impressive and wonderful numerical
simulated results for two-dimensional or three-dimensional discontinuous problems are contin-
ually reported.
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Various numerical methods have been developed for the numerical simulation of shallow water
wave problems, such as the finite difference method, characteristic method, finite element
method, grid type method, spectral method and finite volume method (FVM) and so on. In recent
years, FVM has attracted wide attention and has a series of successes in the numerical simulation
of two-dimensional shallow water wave problems. Using Roe’s Riemann solver, Alcrudo and
Carcia-Navarro [1] developed a high-resolution Godunov-type MUSCL-FVM and reported
impressive results for rapidly varying inviscid flow. Zhao et al. [2] using Osher’s scheme [3],
designed a FVM on unstructured meshes. Anastasiou and Chan [4,5] introduced a Roe-type
second-order-accurate upwind FVM on unstructured triangular meshes. Using a Harten–Lax–
van Leer (HLL) Riemann solver, Hu et al. [6] developed an HLL-type MUSCL-FVM. Tseng
[7] proposed an explicit FVM, which takes the Roe, TVD and ENO method as the special case
respectively.

Recently, Liska and Wendroff [8] reported the composite scheme for two-dimensional shallow
water equations, which combined Lax–Wendroff (LW) and Lax–Friedrich (LF) into a
multi-steps composite scheme. It is well known that both LW and LF have mutual opposite
drawbacks in their dissipation and dispersion effects. The LW scheme is a second-order accurate
scheme, but its high numerical dispersive effect will produce oscillation close to shocks. The LF
scheme is non-oscillatory but has an overextending numerical dissipation effect [9–11]. A
composite scheme combines these two methods into a step-by-step scheme to exploit their merits
and remove their deficiencies. One example of a composite scheme is a global composition of
several LW steps followed by one diffusive LF step, which serves as a consistent filter removing
the unwanted oscillations. This simple construction is efficient and produces surprisingly good
results. By comparison, the method in [8] is a finite difference scheme (FDS) on a regular
trapezoidal mesh only, this bringing a serious restriction to the application of the method.

In this paper, a composite FVM on unstructured triangular meshes is advanced. Since the
method is designed on unstructured meshes, it is able to handle problems with arbitrary
complexity domains. Five typical problems of discontinuous solutions of two-dimensional
shallow water, including the classical dam break problems and supercritical channel flow
problems, are solved by the present method. The numerical results show that the proposed
method, which needs no use of a limiter function and is easily to implement, is accurate, robust
and highly stable.

The paper is organized as follows. Section 2 presents the shallow water equations in two
dimensions. Section 3 describes the composite finite volume discretization of two-dimensional
shallow water equations on the unstructured triangular meshes, the criterion for numerical
stability and the boundary conditions used. In Section 4, the numerical results of several
two-dimensional steady and unsteady flows with discontinuities are given to validate and
demonstrate the usefulness and the good features of the schemes. Finally, a discussion and
concluding remarks are given in the last two sections.

2. TWO-DIMENSIONAL SHALLOW WATER EQUATIONS

Under the assumption of an incompressible, constant pressure distribution on free sur-
face, with neglecting wind, Coriolis forces and horizontal internal shear stresses, the
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two-dimensional shallow water equation can be expressed in conservation laws as follows:

Ut+ (F(U))x+ (G(U))y=S

where U is the vector of conservative variables, F(U) and G(U) are the flow fluxes
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h is the depth of water, u and � are the depth-averaged velocity components in the x-direction
and y-direction respectively, g the gravitational acceleration, S a source term, due to the
friction losses and bed slopes. In the present study, only the homogeneous case is considered
(S=0). The Jacobian matrices of the fluxes F and G are
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with eigenvalues {u, u��gh} and {�, ���gh} respectively.

3. NUMERICAL METHODS

3.1. One-dimensional composite finite difference schemes

For a system of conservation laws

Ut= fx(U)

the two-step LF scheme on a staggered grid is defined as

Ui+1/2
n+1/2=

1
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[Ui
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n ]+
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The LW scheme employs Richtmyer’s two-step algorithm. The first step uses the same
predictor (1), the second step takes the leap-frog scheme

Ui
n+1=Ui

n+
�t
�x

[ f(Ui+1/2
n+1/2)− f(Ui−1/2

n+1/2)] (3)

It is well know that the LW scheme produces oscillations in the vicinity of shocks, while LF
is excessively diffusive, smearing out the shocks.

The composite scheme is defined by global composition through with k−1 LW steps
followed by one LF step. The operator defined by the LW scheme (1) and (3) is denoted LW,
and the operator defined by the LF scheme (1) and (2) by LF, with both operators doing one
time step from time level n to n+1. Then, the difference operator Sk is defined as

Sk=LF�LW� · · · �LW (4)

and the composite scheme is called LWLFk

Un+k=SkUn (5)

The numerical solutions obtained by LWLFk not only maintain the sharpness of shocks, but
also have no oscillations.

3.2. Composite finite �olume method on unstructured triangular meshes

Consider the system of conservation laws in two dimensions

Ut= fx(U)+gy(U)

The composite finite volume methods on unstructured triangular meshes are constructed as
follows. By the Green’s formula, we have

fx+gy=
1
A
��

fx+gy dx dy=
1
A
�

f dy−g dx (6)

The standard way of FVM takes (6) as the basic device of approximating fx+gy in a suitable
control volume, where A is the area of the domain of integration. The two-step predictor–
corrector method is also adopted. The conservative variables are stored at the nodes of the
meshes, while the predictor conservative variables are stored at the centres of the triangular
elements of the meshes. The algorithm corresponding to one-dimensional LF scheme is still
called LF, but the one corresponding to LW is called a new name CF, which means the
corrector LF scheme. Similar to one-dimensional, the composite schemes formed by k−1
steps of CF followed by one step of LF are denoted CFLFk.
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3.2.1. LF predictor. Suppose the solution region is triangulated into an unstructured mesh, let
c(i ) is the ith triangular cell, the three vertices of c(i ) are counterclockwise denoted by g(i, 0),
g(i, 1), g(i, 2), the corresponding co-ordinates are (x0, y0), (x1, y1), (x2, y2) respectively. The
area of c(i ) is denoted Sc(i). The circumcentre (simply called centre hereafter) of c(i ) is also
denoted c(i ). The area of the sub-triangle �c(i)g(i,1)g(i,2), which is opposite to the grid g(i, 0), is
denoted s(i, 0). Similar meanings are referred by s(i, 1), s(i, 2) respectively (see Figure 1).

Then the LF predictor is calculated as follows:

Sc(i)Uc(i)
n+1/2=s(i, 0)Ug(i,0)

n +s(i, 1)Ug(i,1)
n +s(i, 2)Ug(i,2)

n

+
�t
2

[F01(y1−y0)+F12(y2−y1)+F20(y0−y2)−G01(x1−x0)−G12(x2−x1)

−G20(x0−x2)] (7)

where the fluxes F and G are given by

Fkl= f(Ukl
n+1/4), Gkl=g(Ukl

n+1/4)

and Un+1/4 takes a suitable approximate solution of an appropriate one-dimensional Riemann
problem, for example, the LF approximation of the Riemann problem at each edge of c(i )

U01
n+1/4=

1
2

(Ug(i,0)
n +Ug(i,1)

n )

+
�t
4

( f(Ug(i,1)
n )− f(Ug(i,0)

n ))(x1−x0)+ (g(Ug(i,1)
n )−g(Ug(i,0)

n ))(y1−y0)
(x1−x0)2+ (y1−y0)2 (8)

3.2.2. LF corrector. Let g(i ) is the ith grid point of the mesh, the co-ordinate of g(i ) is (xg, yg).
In an unstructured mesh, the number of the neighbouring cells of a node, generally speaking,
is not fixed. Without loss of generality, the number of the neighbouring cells of the node g(i )
is assumed to be six. The neighbouring cells of g(i ) are counterclockwise denoted by

Figure 1. A cell and the notation used in the LF predictor.
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c(i, 0), c(i, 1), . . . , c(i, 5), and the corresponding centre co-ordinates are denoted by
(x0, y0), (x1, y1), . . . ,(x5, y5) respectively. The area of the convex polygon
c(i, 0), c(i, 1), . . . , c(i, 5) is denoted Sg(i). The control volume and the notation used in the LF
corrector are shown in Figure 2.

Then the LF corrector is

Ug(i)
n+1=

1

�
5

j=0

dj

�
5

j=0

dj Uc(i, j)
n+1/2+
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where dj and the fluxes F and G are given by

dj= (�(xj−xg)2+ (yj−yg)2)−1 ( j=0, 1, . . . , 5), Fkl= f(Ukl
n+3/4), Gkl=g(Ukl

n+3/4)

and
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( f(Uc(i,1)
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n+1/2)−g(Uc(i,0)
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3.2.3. CF corrector. The CF predictor is the same as the LF predictor (7). The control volume
and the notation used in the construction of the CF corrector scheme are the same ones used
in the LF corrector (shown in Figure 2). By (6) and using the trapezoidal integral approxima-
tion of f and g along the edges, the CF corrector is

Figure 2. The control volume and the notation used in the LF corrector.
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where set x−1=x5, x6=x0, y−1=y5, y6=y0.
3.3. Numerical stability

The scheme proposed here is an explicit scheme, which is restricted by a CFL-like condition on
the time step. In view of the eigenvalues of the Jacobian matrices of the two fluxes in
two-dimensional shallow water equations are {u, u��gh} and {�, ���gh} respectively, the
criterion adopted in this paper is

�t�
min{di}

max{(�u��gh �)i, (����gh �)i}

In the above inequality, the quantities di represent the whole set of distances between arbitrary
two neighbouring centrepoints.

3.4. Boundary conditions

At the inflow boundary, some constant values of h, u, � on the boundary are given. At the free
boundaries, the transmissive boundary conditions are used. The transmissive boundaries are
obtained by setting hn=0, un=0, �n=0, where the subscript n denotes the derivative along the
normal vector n� of the boundary. At the solid wall boundaries, we use free-slip and
no-permeable boundary conditions, setting hn=0, (u, �) ·n� =0.

4. NUMERICAL RESULTS

In this section, the numerical results are shown. There are several test problems that validate
and illustrate how the composite FVMs work for the two-dimensional shallow water problems.

4.1. Two-dimensional dam break problem

Two two-dimensional dam break tests are examined. The dam problems are rapidly varying
unsteady flows and provide extreme cases to examine the numerical stability and the efficiency
of the scheme.

4.1.1. Two-dimensional partial dam break problem. This test has been computed in several
recent papers [1,2,4,12]. The geometry of the problem consists of a 200×200-m2 basin as
illustrated in Figure 3. The initial water level of the upstream of the dam is 10 m and the tail

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 933–949



WANG JIWEN AND LIU RUXUN940

Figure 3. Definition of problem domain for partial dam break test.

water is 5 m high. At the instant of dam failure, water is released into the downstream side
through a breach 75 m wide, creating a bore wave that moves while spreading laterally. At the
same time a depression wave, or rarefaction wave, propagates upstream. The problem domain
was triangulated into 5722 cells (see Figure 4).

Calculation is done by the CFLF4. The computational model was run up to 7.2 s after the
dam break. Figures 5 and 6 show the three-dimensional view of the water surface elevation and
the contour map of water depths respectively. These results agree well with those reported in
[1,2,4,12].

Figure 4. The unstructured mesh for partial dam break test.
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Figure 5. Water surface profile at t=7.2 s after breaking of dam.

Figure 6. Contour plot of water elevation for partial dam break test.

4.1.2. Circular dam break problem. This problem was first solved in [1] then also in [4,7,8]. The
problem domain is a square (0, 50 m)× (0, 50 m). In the centre of the square is a cylindrical
dam with radius 11 m. The initial water level is 10 m inside the dam and 1 m outside the dam
and water is initially at rest.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 933–949
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Suddenly, the dam disappears and then the waves radially spread. The computational
domain was triangulated into 5790 cells (see Figure 7), and the model was run for up to 0.69
s after the dam break. Calculation is done by the CFLF7. Figures 8 and 9 show the numerical
results for the water surface elevation in three- and two-dimensions respectively. The plots
show that the circular symmetry is well preserved. In general, the contours of water surface
elevation appear in good agreement with those reported in [1,4,7,8].

4.2. Supercritical channel flows

These supercritical (Froude number Fr=�u2+�2/�gh�1) flow test cases include flows
through the channel with wall constrictions. Their solution is a steady state flow with hydraulic
and negative jumps.

4.2.1. Oblique hydraulic jump. The oblique hydraulic jump is induced by means of an
interaction between a supercritical flow and a converging wall deflected through an angle
�=8.95°. The stock wave is formed with an angle �. This problem is a very useful standard
test for two-dimensional hydraulic flow modelling because the exact solution is available. The
definition of the problem domain and a schematic diagram of the induced shock front are
show in Figure 10.

The initial and inflow conditions are the height h0=1 m, velocity u0=8.57 m s−1 and
�0=0. Fixed boundary conditions are applied at the upstream boundary. Transmissive
boundary conditions are imposed at the downstream boundary and slip and no-pass boundary
conditions at the channel walls. The computational domain was triangulated into 2683 cells
(see Figure 11), and the model was run to steady state. Calculation is done by the CFLF7. The

Figure 7. The unstructured mesh for circular dam break test.
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Figure 8. Water surface profile at t=0.69 s after breaking of circular dam.

depth contour plot of the steady state solution is shown in Figure 12. The angle, formed by the
shock front with the x-axis, ��30° from the numerical solution agrees well with the analytic
results �=30° [1]. Also, the numerical height and velocity h2=1.501 m, �u2�=7.9567 m s−1,
agree well with the analytical prediction h2=1.5 m, �u2�=7.9556 m s−1 [1].

4.2.2. Symmetric channel constriction. In this test case, the channel wall is symmetrically
constricted from both side with angle �=5°. The initial and inflow conditions are the height
h0=1 and Froude number Fr=2.5. The computational domain was triangulated into 4627
cells (see Figure 13), and the model was run to steady state. Calculation is done by the CFLF9.
Figures 14 and 15 show the numerical results for the water surface elevation in three- and
two-dimensions respectively.

In this case, again, they can compare numerical results with analytic ones. Numerical values
of the heights h2=1.256, h3=1.558 of the first and second plateau agree well with analytical
results h2=1.25, h3=1.55 [8].

4.2.3. Symmetric channel with �ariable width. In this test case, the channel wall is symmetrically
constricted from both sides with angle �=15° and past the constriction there follows again a
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Figure 9. Contour plot of water elevation for circular dam break test.

Figure 10. Sketch of oblique hydraulic jump.

straight narrower channel. The geometry of the problem with an unstructured mesh of 4493
cells is given in Figure 16.

The initial and inflow conditions are the height h0=1 and Froude number Fr=2.5.
Calculation is done by the CFLF8, and the model was run to steady state. Figures 17 and 18
show the numerical results for the water surface elevation in three- and two-dimensions
respectively.
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Figure 11. The unstructured mesh for oblique hydraulic jump test.

Figure 12. Water surface profile showing oblique hydraulic jump.

The results are similar to those in [8], and show again a cross-wave pattern that includes not
only hydraulic jumps as in the previous examples, but also negative jumps that are caused by
the presence of concave corners.

5. DISCUSSION

Early in 1968, Fromm et al. [13,14] discovered the composite effect of FDS by means of
adjusting numerical dissipation effect and numerical dispersion effect and proposed an
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approach to eliminate or constrain the numerical dispersion efficiency of FDS by a similar
composite idea. Their famous works attracted a lot of attention. In 1974, Warming et al. [15]
systematically developed the theory of remainder analysis of FDS and provided a theoretical
basis for the reforming, improving and optimizing of FDS. The design and successful
applications of the MacCormack scheme and the �-scheme, the good performance of the
composite scheme in [8] and in this paper all show that the composite approach by using
mutual-opposite-effect schemes is directional and successful.

Figure 13. Geometry and the unstructured mesh for the symmetry channel constriction problem.

Figure 14. Water surface profile for the symmetry channel constriction problem.
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Figure 15. Contour plot of water elevation for the symmetry channel constriction problem.

Figure 16. Geometry and the unstructured mesh for the symmetry channel with variable width problem.

6. CONCLUSIONS

A versatile, easily to implement, composite finite volume method for the two-dimensional
shallow water equations has been developed for unstructured triangular meshes and tested.
The method is formed by global composition of several Lax–Wendroff type multi-step
followed by a Lax–Friedrich step, need no use of a limiter, and is able to attain an adequate
accuracy by adjusting the number of times of applying the two schemes which have counter
remainder effects. The scheme has been applied to the two-dimensional dam breaking
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Figure 17. Water surface profile for the symmetry channel with variable width problem.

Figure 18. Contour plot of water elevation for the symmetry channel with variable width problem.

problems and the supercritical channel flows. The numerical results show that the method is
stable, highly flexible, able to handle a wide range of flow regimes and able to capture shock
well. From the authors’ experience, the scheme is a rather fast algorithm. So, the method is
preferred for practical applications when computation time, overall accuracy and applicability
are considered.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 933–949



2D SHALLOW WATER EQUATIONS 949

ACKNOWLEDGMENTS

This work was supported by NSF of America grant INT-96011084 and NNSF of China grant 10071083.

REFERENCES

1. Alcrudo F, Garcia-Navarro P. A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water
equations. International Journal for Numerical Methods in Fluids 1993; 16: 489–505.

2. Zhao DH, Shen HW, TabiousIII GQ, Lai JS, Tan WY. Finite-volume two-dimensional unsteady flow model for
river basins. ASCE Journal of Hydraulic Engineering 1994; 120: 864–883.

3. Osher S, Solomone F. Upwind difference schemes for hyperbolic systems of conservation laws. Mathematics in
Computing 1982; 38: 339–374.

4. Anastasiou K, Chan CT. Solution of the 2D shallow water equations using the finite volume method on
unstructured triangular meshes. International Journal for Numerical Methods in Fluids 1997; 24: 1225–1245.

5. Chan CT, Anastasiou K. Solution of incompressible flows with or without a free surface using the finite volume
method on unstructured triangular meshes. International Journal for Numerical Methods in Fluids 1999; 29: 35–57.

6. Hu K, Mingham CG, Causon DM. A bore-capturing finite volume method for open-channel flows. International
Journal for Numerical Methods in Fluids 1998; 28: 1241–1261.

7. Tseng MS. Explicit finite volume non-oscillatory schemes for 2D transient free-surface flows. International Journal
for Numerical Methods in Fluids 1999; 30: 831–843.

8. Liska R, Wendroff B. Two-dimensional shallow water equations by composite schemes. International Journal for
Numerical Methods in Fluids 1999; 30: 467–479.

9. Liu RX, Zhang MP, Wang J, Liu XY. The designing approach of difference schemes by controlling the
remainder-effect. International Journal for Numerical Methods in Fluids 1999; 31: 523–533.

10. Liu RX. On the nonlinear computation stability. Acta Mechanica Sinica 1984; 5: 529 (in Chinese).
11. Liu RX, Zhou ZH. The remainder-effect analysis of FDS and the applications. Applied Mathematics and

Mechanics 1995; 16: 87–96.
12. Fennema RJ, Chaudhry MH. Explicit methods for 2D transient free-surface flows. Journal of Hydraulic

Engineering ASCE 1990; 116: 1013–1034.
13. Fromm JE. A method for reducing dispersion in convective difference schemes. Journal of Computational Physics

1968; 3: 176–189.
14. Hirt CW. Heuristic stability theory for finite difference equations. Journal of Computational Physics 1968; 2:

339–355.
15. Warming RF, Hyett BJ. The modified equation approach to the stability and accuracy analysis of finite difference

methods. Journal of Computational Physics 1974; 14: 159–179.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 933–949


